Latitude, Longitude, Great Circles

Vocabulary:

geodesic: a curve on a surface giving the shortest distance between two points;
different geometries (e.g., Euclidean, spherical, hyperbolic) will have different
geodesics.

great circle: the geodesic for a sphere; a circle on the surface of a sphere with
maximal circumference.

meridian: on the earth, a north-south great circle (one which connects the poles).

Suppose the earth is a perfectly round ball, which of course it is not, with radius
p = 3960 miles. The angular coordinates # and ¢ range from 0 to 27 and 0 to ,
respectively — except we always work in degrees when thinking about the earth, so really
the ranges are 0° < 6 < 360° and 0° < ¢ < 180°. Those two coordinates give us latitude
and longitude, a two-dimensional system for locating points on the surface of the earth.

We think of the equator, ¢ = 90°, as latitude 0, and have longitude 0 at an arbitrary
fixed prime meridian (the meridian through Greenwich, England, chosen in 1884 because
a majority of ships already used it as the reference meridian on their maps at that time).
We talk about latitude and longitude in terms of degrees off of those lines.

For example, Hanover is at latitude 43.42° N and 72.17° W. That is, it is 43.42° north
of the equator, so ¢ = 90° — 43.42° = 46.58°. It is 72.17° west of the prime meridian —
but west is clockwise, if you're looking down from the north pole, so its 6 is really 72.17°
short of a full 360°, or 287.83°.

We can use this information to find the shortest distance between Hanover and other
cities. For example, New York City is at latitude 40.75° N and longitude 74° W, giving
it spherical coordinates (3960, 286°,49.25°). To find the distance between Hanover and
NYC we think of the earth as centered at the origin. Then vectors of length 3960 in
standard position point to spots on the earth. If we convert to Cartesian coordinates, we
can use the dot product to find the angle between the vectors (in radians) and multiply
by r = 3960 to find the arc length of the segment of the great circle connecting the two
points.

Hanover’s Cartesian coordinates are (880.70, —2738.14,2721.87), and New York’s are
(826.90, —2883.74, 2584.93). As we learned long ago, the cosine of the angle between these
two points interpreted as vectors is their dot product over the product of their length:

ey _ (88070, ~2738.14, 2721.87) - (826.90, ~2883.74, 2584.93)

(3960)2
Thus cos a = 0.9986, so a = 0.0529 radians and the distance is (0.0529)(3960) = 209.57

miles.

As a second example, Wellington, New Zealand is at 41.19° S and 174.46° E. South
means “past 90°” and east means counterclockwise, so Wellington’s spherical coordinates
are (3960, 174.46°,131.19°). Its Cartesian coordinates are (—2966.10, 287.69, —2607.89).
The cosine of the angle between the vectors leading to Wellington and Hanover is 0.6695,
giving an angle of 2.30 radians and a distance of 9125.15 miles.
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Appendix: Why Are Great Circles Shortest?

It is widely asserted that great circles are geodesics for spheres; that is, that the shortest
path along the surface of the sphere joining two points is the shorter piece of the great
circle joining those two points. If the points are antipodal, then, there are many shortest
paths, but still only one shortest distance. It is less widely proven that great circles are
geodesics for spheres.

Consider two points P and ) on the sphere. We let ¢ be the arc of a great circle
passing through P and @), and (for contradiction) suppose { is another curve on the
sphere of strictly shorter length than ¢. Denote the length of a path by |¢|. We will make
an argument which ends by asserting |[¢| < |¢|, and conclude that there can be no such .

The first step is to approximate ¢ by arcs of great circles. Split lz into subcurves by
choosing points Py, Ps, ... P, strictly between P and () which lie on ¢, and join adjacent
points by arcs of great circles. Name the path you’ve created ¢'. If we choose the points
close enough together we can get the arc of the great circle between each adjacent pair
to be very similar to the portion of ¢ joining that pair. In particular, we can get ¢ close
enough to £ that |¢'| < ||, just as with |/].

The next step is to delete the P; points one by one, starting with P;. We will let the
path ¢ be ¢ from P, to ), but the arc of the great circle joining P and P, otherwise.
Deleting additional points, we keep replacing the beginning of the path by a great circle
arc directly from P to the first remaining point. When all P; have been removed we are
left with ¢ itself, the great circle arc from P to Q). [Or some other great circle arc, if P
and @ are antipodal, but the important part is the length, which will be the same.]

The contradiction comes in as follows: we will prove |[¢”| < |¢| (in particular, still strictly
less than |¢|). By extension, then, all the later paths obtained by deleting additional points
will be no longer than the path they replace. However, the final path is ¢ itself, and so
this will show |¢| < |¢|, which is a contradiction.

So how do we prove |[¢’| < |/|? By moving off the sphere and using the fact that great
circles lie in planes containing the center of the sphere, which we will call the origin. Since
we're talking about ¢” in particular, the three great circles we care about are those joining
P, Py, and P, in the three possible pairings. The arc lengths will be proportional to the
angles at the origin where the planes meet, and the ordinary triangle inequality says the
sum of two of those angles must be at least as great as the third one. Therefore ¢/ must
be at least as long as ¢’ from P to P, and it is equal otherwise, so |[¢"] < |'].



