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Abstract. We prove that there exists a noncomputable c.e. real which is low
for weak 2-randomness, a definition of randomness due to Kurtz, and that all
reals which are low for weak 2-randomness are low for Martin-Löf randomness.

1. Introduction

In this paper we are concerned with a concept of randomness due to Kurtz in
his thesis [7]. Instead of defining randomness as avoidance of measure-zero sets, as
in the work of Martin-Löf, Kurtz defined it in terms of membership in measure-
one sets, an idea of having all typical properties rather than lacking all special
properties.1

Definition 1.1 (Kurtz [7]). A real α is weakly n-random (w-n-random, Kurtz
n-random) if it is a member of all Σ0

n classes of measure one.

The name reflects that in the n = 1 case this is a weaker condition than
Martin-Löf randomness. In fact, weak (n + 1)-randomness implies n-randomness
(the relativization of Martin-Löf randomness) and n-randomness implies weak n-
randomness, and neither converse holds. Note that Gaifman and Snir’s definition of
Σn-randomness [4], made independently, is the same as weak n-randomness when
restricted to the appropriate language and coin-toss probability. They give a simi-
larly broadened version of Martin-Löf randomness, and state that the relationship
above between the two holds for the fully general definitions.

The work of Downey, Griffiths and Reid [1], of Kurtz and of Jockusch in [7] exten-
sively explores characterizations of w-1-randomness, Turing degrees of w-1-random
reals, and reals which are low for w-1-randomness (defined below). However, w-n-
randomness is less well-studied, with the primary results in the theses of Kurtz [7]
and later Kautz [5] and Wang [14].

This paper is concerned with weak 2-randomness, which perhaps should be called
strong 1-randomness, since it seems the first level in the Kurtz hierarchy where
typical randomness behavior occurs. From the definition above α will be weakly
2-random iff α is in all Σ0

2 classes of measure 1.
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1We use real to mean an element of Cantor space, 2ω . This space is equipped with the usual
topology with the basis of clopen sets [σ] = {σα : σ ∈ 2<ω & α ∈ 2ω}, with Lebesgue measure

µ([σ]) = 2−|σ|.
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An equivalent definition is to say α is weakly 2-random iff α avoids all Π0
2 nullsets.

Compare this to Martin-Löf randomness, which is equivalent to avoiding all Π0
2

nullsets with effective convergence.
Martin-Löf randomness is sufficiently weak to allow for quite “nonrandom” be-

havior. For example, Kučera and Gács showed that every real is computable from
a Martin-Löf random real. Also from their work it follows that every Turing degree
above 0′ contains a Martin-Löf random real. On the other hand, Frank Stephan
[13] showed that if a degree is Martin-Löf random and is sufficiently powerful to
be able to compute a {0, 1}-valued fixed point free function (i.e., it is PA) then
it must be above 0′. Thus, such reals are quite atypical random reals, which in
general must have low computational power. Similarly Sacks [12] showed that if A
is noncomputable then µ({B : A ≤T B} = 0. We would expect no real that was
random relative to A to be above A in the Turing degrees. Again {B : A ≤T B} is
a ΠA

2 -nullset (by Sacks’s Theorem) and hence if B is weakly 2-random relative to
A, then A 6≤T B, as we would expect.

We prove that in fact if A is weakly 2-random then the Turing degree of A and
0′ form a minimal pair. However, the main thrust of the present paper is to explore
lowness for weak 2-randomness. This is especially interesting in that if a real A is
low for weak 1-randomness if means that A is hyperimmune free, whereas if A is
low for Martin-Löf randomness then A must be of low Turing degree.

We prove that there indeed do exist reals that are low for weak 2-randomness.
Indeed there are computably enumerable sets which are low for weak 2-randomness.
Technically this is much more demanding than the result for Martin-Löf randomness
since a consequence of the first result shows that there are no universal Π0

2 nullsets.
As our final result we prove that if A is low for weak 2-randomness then A is low for
Martin-Löf randomness. We leave open the question whether they are the same,
but conjecture they are not. We remark that there are a number of other possible
proper subclasses of the low for Martin-Löf random reals, such as the reals which
are Martin-Löf non-cuppable reals (Nies [11]), and the strongly jump traceable reals
(Figueira, Nies, Stephan [3]). We believe that these classes are all related.

2. Preliminaries

We recall the definition of Martin-Löf randomness.

Definition 2.1 (Martin-Löf [8]). A Martin-Löf test (ML test) is a computable
sequence of c.e. open sets {Un}n∈ω such that for all n, µ(Un) ≤ 2−n. A real α
passes such a test if α 6∈

⋂
n Un; α is Martin-Löf random (also 1-random) if it

passes all ML tests.

We have stated that weak 2-randomness is equivalent to avoidance of Π0
2 nullsets,

whose definition is below. For any n, weak n-randomness may be characterized in
terms of exclusion from nullsets; we give the definition only for n = 2 and refer to
the forthcoming book by Downey and Hirschfeldt [2] for the full version.

Definition 2.2. A generalized Martin-Löf test (GML test) is a Π0
2 nullset. That

is, a computable sequence of c.e. open sets {Un}n∈ω such that Un ⊇ Un+1 for all n
and limn µ(Un) = 0. In other words it is a Martin-Löf test without the restriction
on speed of convergence.

Theorem 2.3 (Kautz [5], Wang [14], after Kurtz [7]). A real is weakly 2-random
iff it passes all GML tests.
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For the proof of Theorem 2.3, see Downey and Hirschfeldt [2]. Relative random-
ness is obtained in the usual way, by adding an oracle to the tests.

We next show that the w-2-random degrees are not ∆0
2. In fact, each forms a

minimal pair with 0′, and as a consequence we obtain the result that there is no
universal GML test.2

Theorem 2.4. Each weakly 2-random degree forms a minimal pair with 0′.

Proof. Suppose not, so there is a non-computable ∆0
2 set Z and a weakly 2-random

set A so that Z = ΦA
e . Since Z is ∆0

2, there is an effective approximation Z[s] so
that lims Z(n)[s] = Z(n) for all n. Define

Se = {X |(∀n)(∀s)(∃t > s)(ΦX
e (n)[t] ↓= Z(n)[t])}.

Se is Π0
2 and A ∈ Se. Since A is weakly 2-random, µ(Se) > 0. Thus there is a finite

set Σ ⊆ 2<ω and an open set U =
⋃

σ∈Σ

Vσ so that

µ(U ∩ Se) >
3

4
µ(U).

To effectively compute Z(n), we simply need to search for a finite set Ξ ⊆ 2<ω with

µ(
⋃

τ∈Ξ

Vτ ) >
1

2
µ(U) and

⋃

τ∈Ξ

Vτ ⊆ U

so that for any τ0, τ1 ∈ Ξ,
Φτ0

e (n) ↓= Φτ1

e (n) ↓ .

Then Z(n) = Φτ0

e (n). Thus Z is computable, contradiction. �

Corollary 2.5. There is no universal GML test.

Proof. Suppose there is a universal GML test. Then there is a non-empty Π0
1 class

containing only weakly 2-random reals. Then, by the Kreisel Basis Theorem, there
is a weakly 2-random set computed by 0′. This contradicts Theorem 2.4. �

A noncomputable set A is low for a concept of randomness if all random reals are
random relative to A. A stronger condition, meaningful for randomness concepts
defined by passing tests, is for A to be low for tests. Such an A produces oracle tests
which are individually covered by non-oracle tests; that is, for every test {UA

n }n∈ω,

there is a non-oracle test {Ũn}n∈ω such that
⋂

n UA
n ⊆

⋂
n Ũn. It is a uniform

version of, and implies, “low for random.” There is no definition of randomness
where the two versions of lowness are known to differ, though the question is open
in several cases. In particular, for Martin-Löf randomness the two are equivalent
and for weak 2-randomness the equivalence is open.

2Denis Hirschfeldt (personal communication to Downey) has shown that if {Un : n ∈ ω} is a
generalized Martin-Löf test, then there is a computably enumerable noncomputable set B such
that B ≤T A for every Martin-Löf random set A ∈ ∩nUn. A corollary to this and our theorem is
that A real A is weakly 2-random iff A is 1-random and its degree forms a minimal pair with 0′.

The proof of Hirschfeldt’s theorem is not difficult (but it is clever). We define c(n, s) = µ(Un)[s],
here assuming that tests are nested and each Un is presented by an antichain. We put x into
B[s] if We ∩ B = ∅[s], x ∈ We[s] and c(x, s) < 2−e. We define a functional Γ as follows. If

σ ∈ Un, at s, declare Γσ(n) = B(n)[s]. Finally we will define a Solovay test by saying that if
x ∈ Bat s, put Ux[s] into S. Then one verifies (i) µ(S) ≤ 1 (since we use the cost function 2−e),
(ii) B is noncomputable as µ(Un) → 0, obtaining that if A ∈ ∩nUn and A is 1-random, then since
A will avoid S, ΓA =∗ B.
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3. There is a low for w-2-random

While it is possible to computably list exactly the Martin-Löf tests, it is not
possible to do the same with GML tests. Any such list will include sequences of
nested sets whose measure does not limit to zero. We will let {Ue,n}n,e∈ω denote a
canonical list of all potential (oracle) GML tests, where the measure of each Ue,n

is less than 1
2 and for every e, n, Ue,n+1 ⊆ Ue,n.

Theorem 3.1. There is a noncomputable low for weakly 2-random c.e. real.

Proof. We build a set A which is low for weak 2-random tests. As above, let {UA
e,n}

be a canonical list of all potential oracle GML tests. We will build a simple c.e. set

A and sequences {Ũe,n} (not dependent on A) witnessing the lowness of A. That

is, for all e we ensure
⋂

n Ũe,n ⊇
⋂

n UA
e,n, and if the latter is a GML test the former

is as well.
Let Wf be an enumeration of all c.e. sets. The containment

⋂
n UA

e,n ⊆
⋂

n Ũe,n

will be implicit in the construction. For the rest, we have the following requirements.

Pf : |Wf | = ω ⇒ Wf ∩ A 6= ∅.

Re : limk µ(UA
e,k) = 0 ⇒ limk µ(Ũe,k) = 0.

We meet Re by selecting values n(e, k) indexing a subsequence of UA
e,k and setting

Ũe,n(e,k) =
⋃

s UA
e,n(e,k)[s], where sets with indices i, n(e, k) < i ≤ n(e, k + 1), are

equal to the set of index n(e, k). The intention is that UA
e,n(e,k) is the first set of

the eth potential GML test to have measure less than 2−k. Of course, since the
construction is dynamic, we will have to guess the subsequence and will often be
incorrect. Hence in reality n(e, k) = lims n(e, k, s) and sets may have more content
than simply the union

⋃
s UA

e,n(e,k)[s]. We will ensure that if {UA
e,k}k∈ω is truly a

GML test, the limit n(e, k) will exist and (therefore) the additional content will be
bounded.

However, that is not all of the difficulty. If changes to A cause UA
e,n(e,k) to

enumerate and then remove too much measure, setting Ũe,n(e,k) =
⋃

s UA
e,n(e,k)[s]

may prohibit limk µ(Ũe,k) = 0. Likewise, temporary addition of measure to UA
e,n(e,k)

may lead us to believe falsely that UA
e,n(e,k) is not the first set of measure less than

2−k and define n(e, k, s + 1) 6= n(e, k, s). Finitely often that is not a problem, but
if it occurs infinitely often lims n(e, k, s) will fail to exist.

We answer both difficulties by splitting Re into subrequirements.

Re,k,d : [n(e, k) defined with µ(Ũe,n(e,k)) < 21−k] ∨ [µ(UA
e,d) ≥ 2−k].

For a fixed e, k, meeting these requirements means either n(e, k) is eventually
defined or (∀ n) [µ(UA

e,n) ≥ 2−k > 0], and hence {UA
e,n} is not a test. To meet Re,k,d

we restrain enumeration into A. The requirements which are still attempting to
define n(e, k) will not actively impose restraint; each Pf requirement will have

restrictions on its enumeration into A that without injury will keep µ(Ũe,n(e,k)) <

21−k. Those Re,k,d which see µ(UA
e,d) ≥ 2−k at stage s will attempt to keep the

measure high by imposing restraint r(e, k, d, s) = s with priority 〈e, k, d〉. For all
〈e, k, d〉, r(e, k, d, 0) = 0.
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After Kučera and Terwijn [6], we define

α(y, e, k, s) = µ
(⋃

{[σ] : y < u([σ], As, 〈e, n(e, k, s)〉, s)}
)

,

the measure of the part of UA
e,n(e,k)[s] which has y below its use (we follow the

convention that all uses are bounded by the current stage of the construction). The
requirement Pf requires attention with witness x at stage s if Wf,s ∩ As = ∅ and
there is some x > 2f in Wf,s such that

α(x, e, k, s) < 2(k+f+1) for all 〈e, k〉 < f

and

x > r(e, k, d, s) for all 〈e, k, d〉 < f.

Construction

Set the convention that at stage s only UA
e,k with e, k ≤ s are nonempty. Set

Ũe,k,0 = ∅ and n(e, k, 0) = k for all e, k. To re-index with n(e, k, s + 1) = m means
to set n(e, k + i, s + 1) = m + i for i ≥ 0 and n(e, j, s + 1) = n(e, j, s) for j < k.
Stage s:
Step 1. If any Pf requires attention, pick the highest-priority such and least witness
x and let As+1 = As ∪ {x}.
Step 2. For each e do the following:

(i) If there are k, d such that µ(UA
e,d[s]) ≥ 2−k but µ(UA

e,d[s − 1]) < 2−k, set

r(e, k, d, s + 1) = s.
(ii) If (i) occurred for some k, d pair such that d ≥ n(e, k, s) or if there is a k such

that Ũe,n(e,k)[s] > 21−k, pick the least such k and re-index with n(e, k, s+1) =
s + 1.

Step 3. For any value which has not been explicitly reset, let the stage s + 1 value

be the same as the stage s value. Let Ũe,n(e,k)[s+1] = Ũe,n(e,k)[s]
⋃

UA
e,n(e,k)[s+1].

Verification

Lemma 3.2. All r(e, k, d) = lims r(e, k, d, s) exist.

Proof. Suppose r(e′, k′, d′) exists for all 〈e′, k′, d′〉 < 〈e, k, d〉, and stage s is such
that all those limits have been attained and all requirements Pf with f ≤ 〈e, k, d〉
have stopped acting (s exists because every Pf acts at most once).

If µ(UA
e,d[s]) ≥ 2−k, then (if not set already) r(e, k, d) will be set at stage s + 1

and never injured. Likewise if µ(UA
e,d) should become too large at a later stage. If

µ(UA
e,d) < 2−k for all stages s′ ≥ s, then r(e, k, d) is never reset after stage s and

has reached its limit. �

Lemma 3.3. If limn µ(UA
e,n) = 0, then for all k, n(e, k, s) has a finite limit.

Proof. Suppose the lemma does not hold for e, and fix some least k such that
n(e, k, s) does not have a finite limit. Since we only reset n(e, k, s) when either

(i) µ(UA
e,n(e,k)[s]) ≥ 2−k or

(ii) µ(Ũe,n(e,k)[s]) ≥ 21−k,

at least one of these must happen infinitely often.
Assume n(e, k, s) is reset because of (i) infinitely often. We claim limn µ(UA

e,n) ≥

2−k. Because UA
e,n ⊇ UA

e,n+1 for all n, every time (i) occurs any sets of index less
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than the current n(e, k) must also have measure at least 2−k. Let UA
e,d be any such

set. Further enumerations into A may cause µ(UA
e,d) to drop below 2−k again, but

by assumption it will later grow back. Since every time µ(UA
e,d) grows from below

2−k to above r(e, k, d) is reset, by Lemma 3.2 it must happen only finitely many
times for any fixed d. Therefore all µ(UA

e,n) eventually grow to at least 2−k and
stay there.

We will show that if (i) happens only finitely often, so does (ii). If all instances
of (i) have passed at stage s, then r(e, k, d) for d ≥ s will never be changed again.
Only finitely-many such restraints will have been set to a nonzero value. Let d′ be
the first d such that r(e, k, d) = 0 permanently. By choice of k to be minimal, all
n(e, k′, s) with k′ < k will reach a limit; let s be a stage such that those limits have
been reached, all instances of (i) have passed, and all Pf with f ≤ 〈e, k, d′〉 have
stopped acting. We claim n(e, k) can change at most once more after stage s. It may

be that actions from above have increased the measure of Ũe,n(e,k)[s] sufficiently
that even obeying restraint, the actions of lower-priority Pf requirements push that
measure to at least 2−k. However, at such a stage s′, n(e, k) will be reset to s′ + 1;
UA

e,s′+1 is empty at stage s′ and by assumption has measure less than 2−k at all

stages thereafter. The total injury to Ũe,n(e,k) by lower-priority Pf will be less than

∞∑

i=0

2−(k+i+1) = 2−k,

so µ(Ũe,n(e,k)) < 2−k + 2−k = 21−k and (ii) never happens again. �

Corollary 3.4. All Re,k,d are satisfied, and thus all Re are satisfied.

Lemma 3.5. All Pf are satisfied.

Proof. Suppose Wf is infinite. Since by Lemma 3.2 all restraints r(e, k, d) reach a
finite limit, and Pf need respect only finitely many such restraints, there will be
x ∈ Wf respecting all such restraints as well as the requirement that x > 2f .

We must show there will eventually be an eligible x with α(x, e, k, s) < 2(k+f+1)

for all 〈e, k〉 < f . Note that there are only finitely many intervals with size at least
2(k+f+1), so if each has bounded use within each UA

e,k, the maximum of those uses
will be finite and all large enough x will satisfy the α restraint. Therefore the only
potential problem is if for some σ with µ[σ] ≥ 2(k+f+1), the computation “σ ∈ UA

e,k”
is broken and reformed infinitely many times, each time with a use higher than all
elements enumerated into Wf in the meantime. However, only requirements Pf ′

with f ′ < f may be allowed to break a computation for σ, and there are only finitely
many of them. Therefore all the uses reach a finite limit and Pf will eventually be
allowed to act. �

As A is clearly c.e., this completes the proof of Theorem 3.1. �

4. Each low for w-2-random is low for ML-random

Given multiple definitions of randomness, their relationship to each other is of
interest. In particular, if C ⊆ D are sets of reals random with respect to two
different notions of randomness, we can ask whether the reals low for those notions
have the same containment relationship. One means of approaching that question
is by considering lowness for the pair C,D. Since relativizing D usually makes it
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smaller, one would expect that in general C 6⊆ DA even if C ⊆ D. The following
class consists of the sets A for which the inclusion still holds.

Definition 4.1. A set A is in Low(C,D) if C ⊆ DA.

Clearly, if C ⊆ C̃ ⊆ D̃ ⊆ D are randomness notions, then Low(C̃, D̃) ⊆ Low(C,D).
That is, we make the class Low(C,D) larger by decreasing C or increasing D. Note
that Low(C,D) always contains Low(D), the set of reals low for the randomness
notion D.

Let MLRand, W2Rand denote the classes of ML-random and weakly 2-random
sets, respectively.

Theorem 4.2. Low(W2Rand, MLRand) = Low(MLRand). In other words, if each
weakly 2 random is ML-random relative to A, then A is in fact low for ML-random.

Since every ML test is a GML test, W2Rand
A ⊆ MLRand

A for any A. Thus
having A ∈ Low(W2Rand) − Low(MLRand) would contradict Theorem 4.2 and a
corollary to the theorem is that every real which is low for w-2-random is low for
ML-random. Note that here we mean the broader notion of low for random, rather
than the (possibly) more restrictive low for tests.

We begin with several preliminaries, including a simple criterion for being non-
ML-random due to Merkle (see [10]).

Lemma 4.3. If Z = z0z1z2 . . . where K(zi) ≤ |zi|−1 for each i, then Z 6∈ MLRand.

We also use a characterization of Low(MLRand) due to Nies and Stephan (see
[9, Thm 3.3], or [10]).

Theorem 4.4. A is low for ML-randomness iff

(4.1) ∃R c.e. open (µ(R) < 1 ∧ ∀z ∈ 2<ω[KA(z) ≤ |z| − 1 ⇒ [z] ⊆ R]).

We will use a consequence of the failure of (4.1). For an open set V and a string
w, the conditional measure µ(V | w) is 2|w|µ(V ∩ [w]).

Claim 4.5. Suppose (4.1) fails for A. Let β, γ be rationals such that β < γ < 1.
For each c.e. open set V and each string w, if µ(V | w) ≤ β, then there is z such
that KA(z) ≤ |z| − 1 and µ(V | wz) ≤ γ.

Proof. Suppose that no such z exists, and consider the c.e. set of strings

G = {z : µ(V | wz) > γ}.

Whenever KA(z) ≤ |z| − 1 then z ∈ G. Let R be the c.e. open set generated by
G. Note that z0, z1 ∈ G ⇒ z ∈ G. So if (zi)i<N is a listing of the minimal strings
in G (N ≤ ∞), then R =

⋃
i<N [zi].

Now
β ≥ µ(V | w) ≥

∑

i<N

2−|zi|µ(V | wzi) ≥ µ(R) · γ.

Thus 1 > β/γ ≥ µR and (4.1) holds, contradiction. �

Proof of Theorem 4.2. Suppose that A is not low for ML-random. Thus the hy-
pothesis of Claim 4.5 is satisfied. We show that W2Rand ⊆ MLRand

A fails, by
building a set Z ∈ W2Rand that is not ML-random relative to A. We define (non-
effectively) a sequence of strings z0, z1, . . . such that KA(zi) ≤ |zi| − 1 and let
Z = z0z1z2 . . ., so that Z is not ML-random relative to A by Lemma 4.3 relativized
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to A. As in §3 let {Ue,n}e,n∈ω be an enumeration of all potential GML tests. For
Z ∈ W2Rand, for each actual GML test {Ue,n} we define a number ne and ensure
Z 6∈ Ue,ne

. At the beginning of Step e, z0, . . . , ze−1 have been defined, and we let

Ve =
⋃

i<e
ni defined

Ui,ni
,

and we = z0 . . . ze−1. We ensure inductively that

(4.2) µ(Ve | we) ≤ γe := 1 − 2−e.

In particular, since µ(Ve|we) < 1, [we] 6⊆ Ve for each e. Since the Ve are open
and nested, Ve ⊆ Ve+1 for all e, this is sufficient to give Z 6∈ Ue,ne

whenever
{Ue,n} is a test, as required. To see this, note that Z ∈ Ue,ne

requires some
initial segment wm ⊂ Z be such that [wm] ⊆ Ue,ne

(WLOG and in fact necessarily
m > ne). However, our guarantee of [wm+1] 6⊆ Vm+1, wm+1 ⊃ wm, contradicts
[wm] ⊆ Ue,ne

⊆ Vm+1, so Z 6∈ Ue,ne
.

Note that w0 is the empty string and V0 = ∅, so that (4.2) holds for e = 0.
Step e ≥ 0. If {Ue,n}n∈ω is not a test (i.e., limn µ(Ue,n) 6= 0), then leave ne

undefined. Otherwise, choose ne so large that

µ(Ue,ne
) ≤ 2−|we|−e−2.

In particular, µ(Ue,ne
|we) ≤ 2−(e+2).

Then letting Ve+1 = Ve ∪ Ue,ne
, we get

µ(Ve+1 | we) ≤ γe + 2−(e+2) = 1 − 2−e + 2−(e+2) < 1.

Applying Claim 4.5 to V = Ve+1, w = we, β = γe + 2−(e+2), and γ = γe+1 > β,
there is z = ze such that KA(z) ≤ |z| − 1 and µ(Ve+1 | wez) ≤ γe+1. Thus (4.2)
holds for e + 1. �
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[6] Kučera, A. and S. Terwijn, Lowness for the class of random sets. J. Symbolic Logic 64 (1999),

no. 4, 1396–1402.
[7] Kurtz, S., Randomness and Genericity in the Degrees of Unsolvability. Ph.D. thesis, Univer-

sity of Illinois at Urbana-Champaign, 1981.
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