
FINITE SELF-INFORMATION

DENIS R. HIRSCHFELDT AND REBECCA WEBER

Abstract. We present a definition, due to Levin, of mutual in-
formation I(A : B) for infinite sequences. We say that a set A has
finite self-information if I(A : A) < ∞. It is easy to see that ev-
ery K-trivial set has finite self-information. We answer a question
of Levin by showing that the converse does not hold. Finally, we
investigate the connections between having finite self-information
and other notions of weakness such as jump-traceability. In partic-
ular, we show that our proof can be adapted to produce a set that
is low for both effective Hausdorff dimension and effective packing
dimension, but not K-trivial.

We think of the information content of a finite binary string σ as
its prefix-free Kolmogorov complexity K(σ). The idea of using plain
Kolmogorov complexity to measure information content was proposed
by Kolmogorov in [10]; for both technical and philosophical reasons
plain complexity is often replaced by prefix-free Kolmogorov complex-
ity (as defined by Levin [12] and later Chaitin [3]) in this and many
other applications. The mutual information of two finite strings σ, τ is
K(σ)+K(τ)−K(σ, τ), where K(σ, τ) := K(〈σ, τ〉) for a standard pair-
ing function 〈·, ·〉. (For more on Kolmogorov complexity and related
concepts, see [15].)

The proper extension of this definition from the finite to the infinite
case is not clear-cut. A computable infinite binary sequence should
contain finitely-much information, as coded by its generating program.
One of the most important notions in the theory of algorithmic ran-
domness is that of a K-trivial sequence, which is an infinite sequence
A such that K(A �n) 6 K(n)+ c for some constant c independent of n
(see Chapter 11 of [6] for more information on K-triviality). Since we
are using prefix-free Kolmogorov complexity to measure information, a
K-trivial sequence should also contain finitely-much information, since
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K cannot differentiate between such a sequence and a computable se-
quence. Conversely, any non-K-trivial sequence should possess infinite
information. Our purpose in this paper is not to propose a definition
for the information content of an individual sequence, though both
sup{K(σ)−KA(σ) : σ ∈ 2<ω} and lim supn(K(A � n)−K(n)) satisfy
the conditions above, but these intuitions provide a means to judge
the quality of a definition of mutual information for infinite sequences.
(Here KA is prefix-free Kolmogorov complexity relativized to A.)

Several such definitions have been proposed by Levin [12, 13, 14]. In
these papers, Levin has also argued for the importance of the notion
of mutual information in a wide range of applications. We focus on
the definition given by Levin in [12], and used in that paper to prove
theorems on information conservation. This definition has a number
of desirable properties, and in many ways fulfills the intuition for the
infinite case. The mutual information of A and B, denoted by I(A : B)
and defined in the following section, is symmetric up to a constant, and
when A and B are finite strings it simplifies to K(A)+K(B)−K(A, B).
Furthermore, if A is K-trivial then I(A : B) is finite for all B, and as
proved below, if A is not K-trivial then there is some B for which
I(A : B) is infinite.

During the AIM Workshop in Effective Randomness (held at ARCC,
Palo Alto, CA, 7–11 August 2006), which the authors attended, Levin
asked whether I(A : A) < ∞ implies A is K-trivial. Here we answer
this question negatively, constructing a non-K-trivial set with finite
self-information. Separating these classes leads us to explore, in the
final section of the paper, the relationships between having finite self-
information and other weakness notions. In particular, we show that
our construction can be modified to produce non-K-trivial sets that
are low for effective dimension, as defined in that section.

At the workshop Levin also asked the “soft” question of which def-
inition of mutual information is the “right” one. Our result might be
seen as evidence against the definition presented below. However, we
may argue for its plausibility in the face of our result by consider-
ing the possession of encoded information. If the second author has a
cookbook in Portuguese, full of recipes unfamiliar to her, this does not
help her make any new dishes. However, she possesses information,
as evidenced by the fact that teaming up with the first author—who
knows Portuguese and hence can decode the recipes—she can make
meals she could not previously. This information simply does not con-
tribute to her self-information. This idea of “hidden information”,
which a sequence may not be powerful enough to extract from itself,
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but which may be extracted by another sequence of different compu-
tational power, manifests itself in the contrast between Proposition 3
and Theorem 6 below.

We will use some basic facts about Kolmogorov complexity and al-
gorithmic randomness. As usual, we identify a set A with the infinite
sequence corresponding to its characteristic function. All our loga-
rithms are taken with base 2. Terms and notation not defined below
may be found in Downey and Hirschfeldt [6]. In particular, we will use
the KC Theorem (Theorem 3.6.1 in [6]): The weight of a sequence of
pairs 〈ni, σi〉i∈ω, where the ni are natural numbers and the σi are either
finite binary strings or natural numbers, is

∑
i 2

−ni . Recall that such a
sequence is a KC set if it is a computable enumeration and its weight
is finite. The KC Theorem states that for such a set, K(σi) 6+ ni for
all i. (Here and below, a superscript + on a relation means the rela-
tion holds up to an additive constant.) We will also use the Recursion
Theorem in conjunction with the KC Theorem; for a discussion of this
technique, see Section 3.6 in [6]. Another important tool will be the
result due to Nies [19] that if A is K-trivial then it is low for K; that
is, KA(σ) =+ K(σ) for all σ.

1. Mutual Information

Definition 1 (Levin [12]). The mutual information of infinite binary
sequences A and B is

I(A : B) = log
∑

σ,τ∈2<ω

2−K(σ,τ)−KA(σ)−KB(τ)+K(σ)+K(τ).

Note that this definition is independent of the choice of universal
prefix-free machine up to an additive constant. Levin [12] showed
that if we replace A and B in the above definition by finite strings
α and β, then I(α : β) is equal (up to an additive constant) to
the usual definition of mutual information for finite strings, namely
K(α) + K(β)−K(α, β).

We may think of this definition as follows. One way to measure
the mutual information of individuals A and B is to run through all
pairs of subjects, and for each pair (σ, τ), to determine how much in-
formation A and B have about σ and τ , respectively. The weight we
should give to each pair depends on the relationship between its ele-
ments; the more closely related σ and τ are, the more the pair should
matter in our computation. For example, the fact that A knows about
snakes and B knows about lizards should contribute more to the com-
putation of the mutual information of A and B than the fact that A
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knows about snakes and B knows about doorknobs. The degree of re-
latedness of strings σ and τ is represented by their mutual information
I(σ : τ) = K(σ) + K(τ) − K(σ, τ); in the extreme case σ = τ this is
essentially K(σ), the total information in σ, and if σ and τ are mutu-
ally relatively random it is essentially 0. From this quantity we want
to include only the portion corresponding to A’s knowledge of σ and
B’s knowledge of τ . Since the relativized complexity KA(σ) may be
thought of as measuring what A does not know about σ, we subtract
it from I(σ : τ), and similarly we subtract KB(τ). See [12] for further
comments on the motivations behind this definition, and a way to think
of it in terms of a priori probabilities.

The next two facts (the first of which was noted by several people at
the aforementioned AIM workshop) show that this definition gives, at
least to some degree, the desired split between finite information and
infinite information.

Proposition 2. If A is K-trivial then I(A : B) is finite for all B.

Proof. Let A be K-trivial and B be any set. As mentioned in the
introduction, KA(σ) =+ K(σ) for all σ ∈ 2<ω. Since K(σ, τ) >+ K(τ)
for all σ and τ , we see that I(A : B) is bounded above (up to a constant)
by

log
∑

τ∈2<ω

2−KB(τ),

which is finite by Kraft’s Inequality (see Section 3.6 of [6]). �

Proposition 3 (with Jan Reimann). If A is not K-trivial, there exists
B such that I(A : B) = ∞. In particular, any B >T A⊕∅′ has infinite
mutual information with A.

Proof. Let B >T A⊕∅′; note that B can compute K and approximate
KA from above. We choose a subsequence of initial segments of A and
use B to compress them highly, making the mutual information sum
diverge. To do so, we build a KC set M relative to B.

Since A is not K-trivial, for each n we have some τn ≺ A such that
K(τn)−KA(τn) > n. Since B can compute K, and its approximation
to KA(τ) for any τ can only decrease, B can effectively find such a τn

for each n. Let M = {〈n, τn〉 | n ∈ ω}. Then M is a KC set relative
to B, and hence KB(τn) 6+ n for all n. Since K(τn, τn) =+ K(τn), we
have

I(A : B) > log
∑

n

2K(τn)−KA(τn)−KB(τn)−O(1) > log
∑

n

2n−n−O(1) = ∞.

�



FINITE SELF-INFORMATION 5

It is open whether there is an A for which B >T A ⊕ ∅′ is actually
required to obtain I(A : B) = ∞. We show in the following section
that B = A does not necessarily suffice, though, as noted by Levin
[12], every 1-random set has infinite mutual information with itself and
hence the cases for which B = A does not suffice have measure zero.

One may ask whether letting the sum in Definition 1 range over all
pairs σ, τ ∈ 2<ω is necessary. We may simplify to only σ = τ , obtaining
the following definition.

Definition 4 (Levin [12]). The simplified mutual information of infi-
nite binary sequences A and B is

I ′(A : B) = log
∑

σ∈2<ω

2−KA(σ)−KB(σ)+K(σ).

It is clear that I ′(A : B) = ∞ implies I(A : B) = ∞. How-
ever, it is open whether the converse implication holds, both in gen-
eral and for the special case of A = B, where the answer may dif-
fer. (Proposition 3 does hold for I ′ in place of I, with essentially the
same proof.) A priori, what I(A : B) accounts for that I ′(A : B)
does not, at least not obviously, is information about related sub-
jects. If A knows about snakes and B about lizards, these are suf-
ficiently related topics that A and B share significant information.
However, there does exist a single “snakes and lizards” string about
which they should both know, and hence the plausibility of the idea
that I ′(A : B) = ∞ ⇐⇒ I(A : B) = ∞.

A related question also comes from [12]. As mentioned above, for
finite strings σ, τ , we have I(σ : τ) =+ K(σ) + K(τ) − K(σ, τ). The
corresponding equality for I ′(σ : τ) appears to be open.

2. Finite Self-Information

As mentioned above, I(A : A) < ∞ for all K-trivial A, and
I(A : A) = ∞ for all 1-random A. We make the following definition.

Definition 5. A set A has finite self-information if I(A : A) < ∞.

Our main result, which we prove in this section, shows that this class
of sets properly contains the K-trivials, answering the aforementioned
question of Levin.

Theorem 6. There is a non-K-trivial set A that has finite self-
information.
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Relationships between the class of sets that have finite self-informa-
tion and other classes defined by weakness notions are explored in the
next section. The structure of this class is largely unknown, and the
mutual information of sets that have finite self-information with sets
other than themselves may be of interest. For example, perhaps a set A
that has finite self-information but is not K-trivial requires B >T A⊕∅′
to have I(A : B) = ∞. Less drastically, perhaps if both A and B have
finite self-information then I(A : B) < ∞ always holds.

We need a particular function for the proof of Theorem 6.

Lemma 7. There is a function f such that
∑

σ,τ 2−K(σ,τ)+f(σ)+f(τ) con-
verges and f has a computable approximation for which

(1) (∀i)(∀∞σ)(∀s)[fs(σ) > i].

Before proving this lemma, we note its connection with finite self-
information.

Lemma 8. If
∑

σ,τ 2−K(σ,τ)+f(σ)+f(τ) converges and

(2) K(σ) 6+ KA(σ) + f(σ)

for all σ ∈ 2<ω, then A has finite self-information.

Proof. For such an A, we have

I(A : A) = log
∑
σ,τ

2−K(σ,τ)−KA(σ)−KA(τ)+K(σ)+K(τ)

6 log
∑
σ,τ

2−K(σ,τ)+f(σ)+f(τ)+O(1) < ∞.

�

To prove Lemma 7, we use two auxiliary functions, given by the
following lemmas.

Lemma 9. There is a function h such that
∑

σ 2−K(σ)+2h(σ) converges
and h has a computable approximation for which

(3) (∀i)(∀∞σ)(∀s)[hs(σ) > i].

Note that if we were working with the simplified mutual information
of Definition 4, Lemma 8 would hold with this function h in place of
f .

Proof of Lemma 9. Noneffectively, h is defined as follows. Fix an ap-
proximation Ωs to Ω. (Here Ω is the halting probability of a universal
prefix-free machine; see [6] for more on this number.) We assume this
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approximation is given by a universal prefix-free machine U subject to
the usual convention that if Us(τ)↓ = σ, then s > |σ|. Let s0, s1, . . .
be the nondecreasing sequence such that s0 = 0 and si+1 is the first
stage at which our approximation is within 8−i of Ω. Given σ, let t
be the first stage at which Kt(σ) = K(σ). For the unique i such that
si < t 6 si+1, let h(σ) = i.

If h(σ) = i, then there is a τ such that |τ | = K(σ) and U(τ)↓ = σ
but Usi

(τ)↑. Thus,
∑

σ:h(σ)=i 2
−K(σ) 6 Ω − Ωsi

. If i > 0, then this

quantity is at most 8−i, so∑
σ

2−K(σ)+2h(σ) 6
∑

σ:h(σ)=0

2−K(σ) +
∑
i>0

∑
σ:h(σ)=i

22i2−K(σ)

6 Ω +
∑
i>0

4i8−i = Ω +
∑
i>0

2−i < ∞.

To approximate h, we first approximate the sequence (si). Let
s0[t] = 0 for all t. For i > 0 and t, let si[t] be the least s such that
Ωt−Ωs 6 8−i. Clearly, si[t] 6 si[t+1] for all i and t, and limt si[t] = si

for all i.
To define ht(σ), let t′ 6 t be the most recent t′ > |σ| at which

Kt′(σ) < Kt′−1(σ), or t′ = |σ| + 1 if there is none. Let i be such that
si[t] < t′ 6 si+1[t], and set ht(σ) = i.

It is clear that this approximation is computable and has limit h.
If |σ| > si then |σ| > si[t] for all t, so ht(σ) > i for all t. Thus, our
approximation to h satisfies (3). �

Lemma 10. There are a 2-place function g and a constant r such that
for every σ we have

∑
τ 2−K(σ,τ)+g(σ,τ) < 2−K(σ)+r, and furthermore g

has a computable approximation such that for each σ,

(4) (∀i)(∀∞τ)(∀s)[gs(σ, τ) > i].

Proof. The proof of this lemma is similar to that of Lemma 9. Indeed,
it would not be difficult to obtain Lemma 9 as a corollary to this lemma,
but we chose not do so for clarity of exposition.

Let Ωσ be the sum of 2−|ρ| over all ρ that are descriptions of (σ, τ)
for some τ . The function σ 7→ − log Ωσ is a complexity measure, so by
the minimality of K among such measures, there is a constant r such
that 2−K(σ)+r > Ωσ for all σ. (Here log r means the base 2 logarithm
of r, rounded up to the nearest larger integer. See Section 3.7 of [6] for
more details on the minimality of K among complexity measures.) We
can choose r so that 2−K(σ)+r − Ωσ > 1.

Noneffectively, g is defined as follows. Fix uniform approximations
Ωσ

s to Ωσ for each σ, with the same assumption as in the proof of Lemma
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9. For a given σ, let s0, s1, . . . be the nondecreasing sequence such that
s0 = 0 and si+1 is the first stage at which our approximation is within
4−i of Ωσ. Given σ, let t be the first stage at which Kt(σ, τ) = K(σ, τ).
For the unique i such that si < t 6 si+1, let g(σ, τ) = i.

If g(σ, τ) = i, then there is a ρ such that |ρ| = K(σ, τ) and
U(ρ)↓ = (σ, τ) but Usi

(ρ)↑, where U is our fixed universal prefix-free
machine. Thus, for each σ, we have

∑
τ :g(σ,τ)=i 2

−K(σ,τ) 6 Ωσ − Ωσ
si
. If

i > 0, then this quantity is at most 4−i, so∑
τ

2−K(σ,τ)+g(σ,τ) 6
∑

τ :h(σ,τ)=0

2−K(σ,τ) +
∑
i>0

∑
τ :g(σ,τ)=i

2i2−K(σ,τ)

6 Ωσ +
∑
i>0

2i4−i = Ωσ +
∑
i>0

2−i = Ωσ + 1 < 2−K(σ)+r.

To approximate g, given σ, we first approximate the sequence (si).
Let s0[t] = 0 for all t. For i > 0 and t, let si[t] be the least s such that
Ωσ

t −Ωσ
s 6 4−i. Clearly, si[t] 6 si[t+1] for all i and t, and limt si[t] = si

for all i.
To define gt(σ, τ), let t′ 6 t be the most recent t′ > |τ | at which

Kt′(σ, τ) < Kt′−1(σ, τ), or t′ = |τ | + 1 if there is none. Let i be such
that si[t] < t′ 6 si+1[t], and set gt(σ, τ) = i.

It is clear that this approximation is computable and has limit g.
For a fixed σ and si as above, if |τ | > si then |τ | > si[t] for all t, so
gt(σ, τ) > i for all t. Thus, our approximation to g satisfies (4). �

Proof of Lemma 7. Let h be as in Lemma 9 and g as in Lemma 10.
We may assume that g(σ, σ) = 0 for all σ. Let <l be the length-
lexicographic ordering on strings. Define

f(τ) = min
σ6lτ

(h(σ) + g(σ, τ)).

Letting r be as in Lemma 10, we have∑
σ,τ

2−K(σ,τ)+f(σ)+f(τ) 6 2
∑

σ

∑
τ>lσ

2−K(σ,τ)+f(σ)+f(τ)

= 2
∑

σ

2f(σ)
∑
τ>lσ

2−K(σ,τ)+f(τ) 6 2
∑

σ

2h(σ)
∑
τ>lσ

2−K(σ,τ)+h(σ)+g(σ,τ)

6 2
∑

σ

22h(σ)2−K(σ)+r = 2r+1
∑

σ

2−K(σ)+2h(σ),

which converges by the choice of h.
Let fs(τ) = minσ6lτ (hs(σ) + gs(σ, τ)), where hs and gs satisfy (3)

and (4), respectively. For a given i, there are only finitely many σ such
that hs(σ) is ever less than i. For each such σ, there are only finitely
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many τ such that gs(σ, τ) is ever less than i. Thus, for all but finitely
many τ , we have hs(σ) + gs(σ, τ) > i for all σ and s. Hence, fs has
property (1). �

We assume without loss of generality that the function f from
Lemma 7 is approximated from above; that is, that fs+1(σ) 6 fs(σ)
for all s and σ. If it is not originally, then we may replace f(σ) with
mint ft(σ) and fs(σ) with mint6s ft(σ), and the desired properties will
still hold.

Before proceeding to the proof of Theorem 6, we establish a couple
of useful lemmas.

Lemma 11. By sufficiently speeding up our enumeration of stages,
we may assume that there is a b such that for each n, c, and v,
the number of strings τ of length n for which there is an s with
Ks(τ) 6 Ks(n) + c = v is bounded above by 2c+b.

Proof. By Chaitin’s Counting Lemma (Theorem 3.7.6 in [6]), there ex-
ists a constant b such that for every n there are fewer than 2c+b-many
τ of length n with K(τ) 6 K(n)+c, so we may assume the approxima-
tion to K is sped up so that for each s we have fewer than 2c+b-many
τ of length n with Ks(τ) 6 Ks(n) + c. If t > s and Kt(n) = Ks(n),
then Ks(τ) 6 Ks(n) + c implies that Kt(τ) 6 Kt(n) + c, so for each
v, there are fewer than 2c+b-many τ of length n for which there is an s
with Ks(τ) 6 Ks(n) + c = v. �

Define an oracle KC set to be a computable enumeration of triples
〈ni, σi, τi〉 such that for the finitely-many triples listed at stage s (if
any), we have |τi| = s, and there is a p such that for any X ∈ 2ω, we
have

∑
τi≺X 2−ni 6 p. The proof of the following result is a straightfor-

ward modification of the proof of the KC Theorem, as in Section 3.6
of [6].

Lemma 12. We can speed up our enumeration of stages sufficiently to
ensure that for each oracle KC set 〈ni, σi, τi〉i∈ω, there is a t such that
if 〈ni, σi, τi〉 is listed at stage s > t then Kτi

s+1(σi) 6+ ni.

We are now ready to prove our main result.

Proof of Theorem 6. We assume in our construction that we have sped
up our enumeration of stages so that Lemmas 11 and 12 apply. We
also assume the usual convention that the use of any computation at
stage s is at most s. By As we mean what we have enumerated into
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A by the beginning of stage s. For the largest number r seen in the
construction by the beginning of stage s, we identify As with the finite
string As � r + 1.

To make A have finite self-information, we use Lemma 8. We ensure
(2) in the usual way, building a KC set M by enumerating axioms
〈KAs

s (σ) + fs(σ), σ〉 whenever needed.
To make A non-K-trivial, for each constant c we define some nc such

that either K(A � nc) > K(nc) + c or KA(nc) < K(nc) − c. (If the
first disjunct holds for infinitely-many c, then A is not K-trivial; if the
second one holds for infinitely-many c, then A is not low for K, and
hence is again not K-trivial.)

For each c, we have a strategy for defining such an nc. This will
be a finite injury priority construction; as usual, the c strategy has
priority over the ĉ strategy if c < ĉ. The module for a single c is as
follows. Let C(x, s) be the set of all strings σ such that there exists a
minimal-length As-description of σ at stage s with use > x. These are
the strings σ for which the approximation to KA(σ) might go up after
stage s if we put x into A after that stage.

We will enumerate numbers mc,i and nc,i for i in some initial seg-
ment of ω. By the KC Theorem, there is a d (independent of c) such
that K(nc,i) 6 c + i + d for all i for which nc,i is defined. By the
Recursion Theorem, we may assume that we know d. We may also as-
sume that we have sped our enumeration of stages sufficiently so that
Ks(nc,i) 6 c + i + d for all s such that nc,i is defined.

Begin with i = 0. Let b be as in Lemma 11. Pick fresh, large numbers
mc,i, nc,i such that the interval (mc,i, nc,i) contains (c + i + d)2c+b-
many numbers. (As we will show below, the size of this interval is an
upper bound on how often we may want to change A to ensure that
Ks(As � nc,i) > Ks(nc,i) + c. There will be at most 2c+b many changes
needed for each new value of Ks(nc,i).)

There are three actions we might take on behalf of c. The first two
ensure that either A is not low for K with constant c or A is not K-
trivial with constant c. The third will be needed in showing that M is
indeed a KC set. It ensures that if we enumerate a number into A for
the sake of c, and this enumeration causes 〈KAs

s (σ)+ fs(σ), σ〉 to enter
M , then fs(σ) is not too small. (As we will show below, requiring that
fs(σ) > 4c suffices.)

First, whenever we see

(5) KAs
s+1(nc,i) < Ks+1(nc,i)− c,
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we suspend the action of the c strategy and restrain A up to the use
of the computation witnessing the current value of KAs

s+1(nc,i) by ini-
tializing all weaker-priority requirements. (The reason we use Ks+1

here instead of Ks will be clear when we apply Lemma 12 below.) The
suspension continues until, if ever, (5) no longer holds. If the strategy
remains suspended forever, then nc,i witnesses that A is not low for K
with constant c.

Second, if action on behalf of c is not suspended, whenever we see
Ks(As�nc,i) 6 Ks(nc,i)+c we enumerate a new number from (mc,i, nc,i)
into A. We will show that we never run out of space for these enu-
merations, and hence this action ensures that if the c strategy is not
eventually suspended forever, then K(A �nc,i) > K(nc,i)+c, and hence
A is not K-trivial with constant c.

Third, if we ever see fs(σ) < 4c for any σ ∈ C(mc,i, s), we initialize
the c strategy by increasing i by one and picking fresh, large mc,i,
nc,i such that again the interval (mc,i, nc,i) contains (c + i + d)2c+b-
many numbers. We also initialize weaker-priority strategies, which
restrains A � mc,i for the new value of mc,i, to attempt to ensure that
the σ ∈ C(mc,i, s) have minimal-length A-descriptions with use > mc,i.
This action ensures that we eventually find an i such that f(σ) > 4c for
all σ ∈ C(mc,i, s), since it ensures that each σ can be in only finitely-
many C(mc,i, s).

We now proceed with the full construction and its verification.

Construction. Let b and d be as above. Each strategy has a counter
(corresponding to the number i above), which is initially set to 0. Ini-
tially no mc,i or nc,i is defined, and A and M are both empty. At stage
s, act as follows.

First, for any σ such that KAs
s (σ) + fs(σ) < KAt

t (σ) + ft(σ) for all
t < s (where we take KAt

t (σ) + ft(σ) = ∞ if t 6 |σ|), enumerate
〈KAs

s (σ) + fs(σ), σ〉 into M .
Next, proceed as follows for each c. Let i be the current value of the

counter associated with c. If the c strategy was suspended at the end
of stage s − 1 but Ks+1(nc,i) < Ks(nc,i), then declare the c strategy
not to be suspended. If the c strategy is not currently suspended and
KAs

s+1(nc,i) < Ks+1(nc,i)−c, then declare the c strategy to be suspended.
We say that this strategy is newly suspended at stage s.

Finally, act for the least c that requires attention, where the attention
that may be required and the action to be taken are as follows. Here
i is the current value of the counter associated with c. When we say
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that we initialize a strategy, we mean that we increase its counter and
declare it not to be suspended.

(i) The numbers mc,i, nc,i are not defined. In this case, define mc,i and
nc,i to be fresh, large numbers such that the interval (mc,i, nc,i)
contains (c + i + d)2c+b-many numbers.

(ii) The c strategy is newly suspended at s. In this case, initialize all
weaker-priority strategies.

(iii) The c strategy is not suspended, the numbers mc,i, nc,i are defined,
and there is a σ ∈ C(mc,i, s) with fs(σ) < 4c. In this case,
initialize the c strategy and all weaker-priority strategies.

(iv) The c strategy is not suspended, the numbers mc,i, nc,i are defined,
and Ks(As � nc,i) 6 Ks(nc,i) + c. In this case, enumerate a new
number from (mc,i, nc,i) into A (we will show below that there
always is such a number not yet in A), and initialize all weaker-
priority strategies.

Verification. The following lemma shows that A is not K-trivial, as
it implies that there are either infinitely many c such that A is not low
for K with constant c, or infinitely many c such that A is not K-trivial
with constant c.

Lemma 13. For each c, the c strategy acts only finitely often, and
its counter has a final value i. Either the c strategy is eventually sus-
pended forever, in which case KA(nc,i) < K(nc,i)− c, or it ensures that
K(A � nc,i) > K(nc,i) + c.

Proof. Fix c and suppose by induction that all stronger-priority strate-
gies have ceased acting by some stage s∗. The c strategy is initialized
at a stage s > s∗ only when there is a σ ∈ C(mc,i, s) with fs(σ) < 4c,
where i is the value of its counter at stage s. Let us say that such
a σ causes this initialization. It is easy to check from the construc-
tion that the numbers put in by strategies for ĉ > c at stages greater
than or equal to s are all greater than mc,i. Thus, by the assumption
that stronger-priority strategies have stopped acting, A cannot change
below mc,i at any stage greater than or equal to s, so the minimal-
length As-description witnessing the fact that σ ∈ C(mc,i, s) is in fact
an A-description. It follows that each σ can cause only finitely-many
initializations of the c strategy. By property (1) of f from Lemma 7,
there are only finitely-many σ such that fs(σ) < 4c for some s; that is,
there are only finitely-many σ that can ever cause an initialization of
the c strategy. Thus the c strategy is initialized only finitely often.

Let s∗∗ be the last stage at which c is initialized (or 0 if there is no
such stage). Let i be the value of the counter associated with c at stage
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s∗∗, and note that this is the final value of this counter. If the c strategy
is newly suspended at a stage s > s∗∗, then KAs

s+1(nc,i) < Ks+1(nc,i)− c.
Since weaker-priority strategies are initialized at stage s, as long
as the c strategy is suspended, A will not change below the use of
the computation that gives KAs

s+1(nc,i) its value. If the c strategy is
permanently suspended after stage s, then K(nc,i) = Ks+1(nc,i), so
KA(nc,i) 6 KAs

s+1(nc,i) < K(nc,i) − c. Otherwise, K(nc,i) < Ks+1(nc,i),
which can happen for only finitely-many s. Thus either the c strategy is
eventually suspended forever, in which case KA(nc,i) < K(nc,i)− c and
the c strategy acts only finitely often, or the c strategy is suspended
for only finitely-many stages.

So suppose we are in the latter case. Every time the c strat-
egy enumerates a number in (mc,i, nc,i) into A at stage s, it is be-
cause Ks(As � nc,i) 6 Ks(nc,i) + c. This enumeration ensures that
At � nc,i 6= As � nc,i for all t > s. By our choice of b and the assumption
that Kt(nc,i) 6 c+ i+d for all t, there are no more than (c+ i+d)2c+b-
many τ of length nc,i with Ks(τ) 6 Ks(nc,i) + c for some s, so there
are no more than (c + i + d)2c+b-many such enumerations. Thus the
c strategy eventually stops acting, and for all sufficiently large s, we
have Ks(As � nc,i) > Ks(nc,i) + c, whence K(A � nc,i) > K(nc,i) + c. �

It remains to show that A has finite self-information. We begin with
an auxiliary lemma.

Lemma 14. Let ics be the value of the counter associated with c at stage
s. There are k and t such that for each c and s > t for which mc,ics , nc,ics

are defined, we have

2−KAs
s+1(nc,ics

) > 2−c−k
∑

σ∈C(mc,ics
,s)

2−KAs
s (σ).

Proof. We enumerate an oracle KC set L. By Lemma 12, there
are k and t such that if 〈ni, σi, τi〉 enters L at stage s > t then
Kτi

s+1(σi) 6 ni + k. At each stage s and for each c 6 s, proceed
as follows. For each σ in C(mc,ics , s), let µ be a witness to σ being
in that set; that is, a minimal length As-description of σ at stage s
with use > mc,ics . Put µ into an auxiliary set Sc,s. Let uc,s be the
measure of the open set in Cantor space determined by Sc,s; in other

words, uc,s =
∑

σ∈C(mc,ics
,s) 2−KAs

s (σ). Let j be least such that 〈j, nc,ics , τ〉
is currently in L for some τ ≺ As. If c − log uc,s < j, then put
〈c − log uc,s, nc,ics , As〉 into L. (Here log r means the base 2 logarithm
of r, rounded up to the nearest largest integer.)
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If s < u is such that As ≺ Au and µ ∈ Sc,s, then µ is still an Au-
description, since its use as an As-description has not changed between
stages s and u. Thus, if ν ∈ Sc,u and ν 6= µ, then µ and ν are incom-
patible. This argument shows that for any X, the set

⋃
As≺X Sc,s is

prefix-free. Thus the sum of uc,s taken over all s such that As ≺ X is
bounded by 1. Hence the sum of 2−j taken over all axioms in L of the
form 〈j, nc,ics , As〉 for As ≺ X is bounded by 2−c+1, and L is an oracle
KC set. Thus, by Lemma 12, for each s > t we have

KAs
s+1(nc,ics) 6 c− log uc,s + k = c + k − log

∑
σ∈C(mc,ics

,s)

2−KAs
s (σ),

which gives us the desired inequality. �

Lemma 15. A has finite self-information.

Proof. We must show that the weight of M is finite, and hence M is

actually a KC set. Let t be as in Lemma 14. Let M̂ be the portion of
M enumerated after stage t. It is enough to show that the weight of

M̂ is finite.
We enumerate 〈KAs

s (σ) + fs(σ), σ〉 into M̂ only when we have

KAs
s (σ) + fs(σ) < KAu

u (σ) + fu(σ) for all u < s, so the weight of M̂ is

bounded by 2
∑

σ 2−minu>t(K
At
u (σ)+fu(σ)). For each σ, either

min
u>t

KAu
u (σ) + fu(σ) = KA(σ) + f(σ),

or there is an s > t such that

KAs
s (σ) + fs(σ) = min

u>t
KAu

u (σ) + fu(σ)

and there is a minimal length As-description of σ whose use is violated
by an enumeration into A at stage s. The amount contributed to the

weight of M̂ by all σ for which the former case holds is bounded above
by 2

∑
σ 2−(KA(σ)+f(σ)) < 2

∑
σ 2−KA(σ) < 2, so it is enough to bound

the sum of 2−(KAs
s (σ)+fs(σ)) over all σ and s > t such that some minimal

length As-description of σ is violated by an enumeration into A at
stage s. For each such σ and s, the enumeration into A at stage s
is done for the sake of some particular c. Say that c is responsible

for 2−(KAs
s (σ)+fs(σ)). It is enough to fix c and show that the sum of all

2−(KAs
s (σ)+fs(σ)) for which c is responsible is bounded by 2−c+O(1).

Let is be the value of the counter associated with c at stage s. As
above, let C(x, s) be the set of all σ such that there is a minimal
length As-description of σ at stage s with use greater than x. The cost
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of putting x into A at stage s for the sake of c (in terms of the sum we
are trying to bound) is ∑

σ∈C(x,s)

2−KAs
s (σ)−fs(σ).

Let k be as in Lemma 14. Then, at stages s > t at which the c
strategy can act, we have

2−Ks+1(nc,is )+c > 2−KAs
s+1(nc,is ) > 2−c−k

∑
σ∈C(mc,is ,s)

2−KAs
s (σ).

So each time we put a number in (mc,is , nc,is) into A at a stage s > t,
we add to our sum at most∑

σ∈C(mc,is ,s)

2−KAs
s (σ)−fs(σ) 6

∑
σ∈C(mc,is ,s)

2−KAs
s (σ)−4c 6

2−4c2−Ks+1(nc,is )+2c+k = 2−Ks+1(nc,is )−2c+k.

By Lemma 11, for each i and each value of Ks(nc,i), we put at most
2c+b-many numbers in (mc,i, nc,i) into A. For each stage s at which we
do so, except possibly for the last one, Ks+1(nc,i) = Ks(nc,i). Thus our
total cost is bounded by

(2c+b + 1)
∑

i

∑
j>K(nc,i)

2−j−2c+k 6 2c+b+1
∑

i

2−K(nc,i)−2c+k+2 =

2−c+b+k+3
∑

i

2−K(nc,i) < 2−c+b+k+3.

Therefore, the weight of M̂ is bounded by 2 +
∑

c 2−c+b+k+3, which
is finite. �

This lemma completes the proof of the theorem. �

3. Relationships to Other Weakness Notions

Recent work has explored the relationship between K-triviality and
jump-traceability, a notion of approximability of the jump operator.
We begin with some definitions.

Definition 16. (i) Define the jump operator J by JA(e) = ΦA
e (e),

where Φe is the eth partial computable function.
(ii) A is jump-traceable if there are a computable function h and a

uniformly c.e. family {Te} of subsets of ω such that ∀e |Te| 6 h(e)
and JA(e)↓ ⇒ JA(e) ∈ Te. If h is known we say A is jump-
traceable via h.
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(iii) A function h is an order if it is computable, non-decreasing, and
unbounded.

(iv) A is strongly jump-traceable if it is jump-traceable via every order.

Figueira, Nies, and Stephan [7] constructed a promptly simple
strongly jump-traceable set, separating that class from the computable
sets. Cholak, Downey, and Greenberg [4] showed that the class of
strongly jump-traceable c.e. sets is properly contained in the class of
K-trivial c.e. sets. Recently, Diamondstone, Greenberg, and Turetsky
[5] showed that every strongly jump-traceable set is computable in a
c.e. strongly jump-traceable set, which implies that the result in [4]
holds without the assumption of computable enumerability.

The proof in [4] shows that if a c.e. set A is jump-traceable via an or-
der h ≈

√
log n then it is K-trivial. Nies [18] showed that all K-trivials

are jump-traceable, and in particular that there exists a constant C
such that if A is low for K with constant b, then A is jump-traceable
with trace obtained effectively in b and with bound C2bn log n. This
result led to the question of whether between

√
log n and n log n there

is a growth rate cutoff that separates K-trivials from non-K-trivials.
Hölzl, Kräling, and Merkle [9] did find such a growth rate, but not
a computable one. Their result implies that every K-trivial is jump-
traceable via an order that is O(log n). Recently, Turetsky [22] built a
K-trivial that is not jump-traceable via any order that is o(log n).

Cholak, Downey, and Greenberg [4] asked in particular whether the
K-trivials are exactly those sets that are h-jump-traceable for all con-
vergent order functions h, those functions for which

∑
n

1
h(n)

< ∞.

Containment of the K-trivials in this class of jump-traceables is a con-
sequence of the decanter method used to show that all K-trivials are
superlow. (See [6] or [20] for details on this method.) Barmpalias,
Downey, and Greenberg [2], however, showed that this containment is
proper. Hence K-triviality sits strictly between “jump-traceable for all
order functions h” (i.e., strongly jump-traceable) and “jump-traceable
for all convergent order functions h” (in fact “jump-traceable for all

superlinear order functions”, where superlinear means limn
h(n)

n
= ∞).

We may ask where the sets that have finite self-information fall in
this hierarchy. The following result and its proof are a first step in
addressing this question.

Proposition 17. If a set has finite self-information then it is jump-
traceable.

Proof. Suppose A is not jump-traceable. Let σ0, σ1, . . . be an effective
listing of 2<ω. If JA(e)↓ then let τe = σJA(e). Let L be the set of all pairs
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〈Ks(e), τe〉 such that s ∈ ω and τe is defined. It is easy to check that L
is a KC set relative to A, so if τe is defined then KA(τe) 6+ K(e).

Let Te = {i | K(σi) < 4 log e}. The Te are uniformly c.e. and
|Te| < e4. Since A is not jump-traceable, there must be infinitely many
e such that JA(e) /∈ Te. For any such e, we have K(τe) > 4 log e. Let
S be the set of such e. Since K(e) 6 2 log e + O(1), we have

I(A : A) > log
∑
e∈S

2K(τe)−2KA(τe)−O(1) > log
∑
e∈S

24 log e−2K(e)−O(1) = ∞.

�

From the proof we see that if a set has finite self-information then it is
jump-traceable via the order n4. Since K(e) 6 log e+2 log log e+O(1),
we may replace the 4 log e in the definition of Te by 2 log e + 4 log log e,
so in fact, if a set has finite self-information then it is jump-traceable
via any n2+ε for ε > 0. We do not know whether every set that has
finite self-information is jump-traceable via n2, say, so our results leave
open the exact relationships between having finite self-information and
various interesting subclasses of the jump-traceables, such as the class
of sets that are jump-traceable for all convergent order functions.

Recall that a set A is generalized low, or GL1, if A′ 6T A ⊕ ∅′. It
follows from the above result that if a set A has finite self-information,
then it is GL1 (see Proposition 8.4.3 of [20]). If A is also ∆0

2, it is
therefore low, in the usual computability theoretic sense. However,
Herbert [8] has recently shown that there is a perfect Π0

1 class of sets
that have finite self-information, which in particular answers a question
in a previous version of this paper by showing the existence of non-∆0

2

sets with finite self-information.

Lutz [16] and others have developed an effective version of Hausdorff
dimension based on martingales in inflationary environments, called
s-gales. From success of s-gales we have the constructive dimension,
or effective Hausdorff dimension, dim(S), and from strong success of
s-gales we have constructive strong dimension, or effective packing di-
mension, Dim(S). (See Chapter 13 of [6] for more details.) These
dimensions have a deep tie to randomness, as shown by the following
results.

Theorem 18. Let S ∈ 2ω.

(i) (Mayordomo [17]). dim(S) = lim inf
n→∞

K(S � n)

n
.
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(ii) (Athreya, Hitchcock, Lutz, and Mayordomo [1]).

Dim(S) = lim sup
n→∞

K(S � n)

n
.

Effective dimension and the theorem above may be relativized, giving
rise to the notion of lowness for dimension. A set A is low for effective
Hausdorff dimension if the effective Hausdorff dimension of S relative
to A is equal to the effective Hausdorff dimension of S for all S. We
can define lowness for effective packing dimension similarly. Clearly,
all K-trivial sequences are low for both notions of dimension. In the
proof of Theorem 6, if instead of ensuring K(σ) 6+ KA(σ) + f(σ) for
the f of Lemma 7 we instead ensure it for f(σ) = log |σ|, then for all
S,

K(S � n)

n
6+ KA(S � n)

n
+

log n

n
,

and the last fraction has lim sup and lim inf zero. Hence, a set A built
in this way will be low for both effective Hausdorff and effective packing
dimension, but not K-trivial, yielding the following result.

Theorem 19. There is a c.e. set that is low for both effective Hausdorff
dimension and effective packing dimension but is not K-trivial.

In the forthcoming paper [11], Lempp, Miller, Ng, Turetsky, and
Weber show that there is in fact a perfect Π0

1 class of sets that are
low for effective Hausdorff dimension, a result that also follows by the
methods of Herbert [8].

The function f from Lemma 7 grows much more slowly than log |σ|,
so it seems to be much easier to produce a set that is low for dimension
than one that has finite self-information. On the other hand, Lempp,
Miller, Ng, Turetsky, and Weber [11] show that if a set is low for
effective Hausdorff dimension then it is jump traceable via O(hr) for
any convergent order function h and any r > 1, and thus, in particular,
via n1+ε for any ε > 0, which is a better bound than what we obtained
above for sets that have finite self-information.

Question 20. What is the exact relationship between having finite
self-information and lowness for dimension?
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